[image: image42.png]

[image: image43.wmf]

	Erreur ! Nom de propriété de document inconnu. IF = "N" "" Erreur ! Nom de propriété de document inconnu. * MERGEFORMAT
Erreur ! Nom de propriété de document inconnu.

Erreur ! Nom de propriété de document inconnu.
	Erreur ! Nom de propriété de document inconnu. IF = "" "" "ORIGIN " * MERGEFORMAT
ORIGIN
Erreur ! Nom de propriété de document inconnu. IF = "" "" "Erreur ! Nom de propriété de document inconnu." * MERGEFORMAT
Erreur ! Nom de propriété de document inconnu.

	Erreur ! Nom de propriété de document inconnu. IF = "" "" "PROJECT " * MERGEFORMAT
PROJECT
Erreur ! Nom de propriété de document inconnu. IF = "" "" "Erreur ! Nom de propriété de document inconnu." * MERGEFORMAT
Erreur ! Nom de propriété de document inconnu.

	
	REFERENCE Erreur ! Nom de propriété de document inconnu.
ISSUE Erreur ! Nom de propriété de document inconnu.
	DATE Erreur ! Nom de propriété de document inconnu.

	
	[image: image42.png]

[image: image43.wmf][image: image44.jpg]Galaxy

[image: image45.png]

[image: image46.emf]

	

	

[image: image47.emf]

	

	

[image: image48.emf]

	

	

	Deliverable D2.4.2 -
Collaborative MDE Process Assistance Definition

Task T.2.4 - Collaborative MDE Process Modelling and assisted enactment

	
	NamE
	partner
	Date

	Written by
	LBATH R. (sections 1, 2, 3, 6.1, 6.2)
KEDJI E. (sections 3.4, 4, 6.3, 8)
COULETTE B. (section 5, 7)

EBERSOLD S. (sections 5.3.3, 5.3.4)
	IRIT
	06/06/2011

	Reviewed by
	
	
	

	
	
	
	

	
	
	
	

Record of Revisions

	Issue
	Date
	Effect on
	Reasons For Revision

	
	
	Page
	Para
	

	1.0
	24/02/2011
	
	
	Document creation

	1.1
	06/06/2011
	
	
	Completing missing sections in v1.0

Table of contents

101.
Introduction

101.1
Goal of this document

111.2
Document organization

112.
CM_SPEM OVERVIEW

143.
CM_SPEM MDE Process Behavior

143.1
Introduction

143.2
Plannable Work Breakdown Elements

153.3
Enactable Process Elements

163.3.1
Activity

173.3.2
Actor

183.3.3
ActorSpecificTask

193.3.4
EnactableProcessElement

193.3.5
EnactmentOperator

203.3.6
Guidance

213.3.7
Milestone

213.3.8
Process

223.3.9
Model

233.3.10
ProcessStateMachine

243.3.11
RoleUse

253.3.12
Step

253.3.13
TaskUse

263.3.14
TransformationUse

273.3.15
ToolUse

283.3.16
ViewpointProcess

293.3.17
WorkProductUse

293.4
Events

303.4.1
CondionalEvent

313.4.2
EnactableProcessElement

313.4.3
Event

323.4.4
EventListening

333.4.5
EventListener

333.4.6
EventDispatcher

343.4.7
OperatorEvent

343.4.8
ProcessStateChangeEvent

353.4.9
Event handling mechanism

393.5
Tool Assignment

403.5.1
EnactableProcessElement

423.5.2
ToolAssignment

423.5.3
ToolUse

433.6
Transformation Behavior

433.6.1
Domain

443.6.2
Rule

453.6.3
Transformation

453.6.4
TransformationUse

473.6.5
TransformationImplementation

473.6.6
TypedModel

483.7
CM_SPEM Managed Guidance

494.
Collaborative Process Behavior Modelling

494.1
Introduction

494.2
Structural collaboration modeling with CM_SPEM

504.3
What collaboration modeling in CM_SPEM is used for

514.4
Collaborative behavior modeling in CM_SPEM

514.4.1
Events

514.4.2
The need for event bubbling

524.4.3
Default events

534.5
Example

534.5.1
General description

544.5.2
Modeling with CM_SPEM

564.5.3
Modifications to the base setup

594.6
Conclusion

605.
Asistance for Process Modeling

605.1
Introduction

605.2
OVERVIEW

615.2.1
Phase 1: Formalize the process

615.2.2
Phase 2: Adapt/Instantiate a process model

615.2.3
Perform a collaborative MDE project

635.3
VIEWPOINT-BASED Process Modeling Methodology

635.3.1
INTRODUCTION

635.3.2
PRINCIPLE

655.3.3
ILLUSTRATIVE EXAMPLE: THE VUML PROCESS

675.3.4
BOTTOM UP STRATEGY APPLIED TO VUML PROCESS

785.3.5
TOP DOWN STRATEGY APPLIED TO VUML PROCESS

805.3.6
USEFULNESS IN GALAXY AND ENACTMENT

815.3.7
CONCLUSION

826.
Assistance for Process Enactment

826.1
General overview

846.2
Process Enactment

856.2.1
Handling Enactment Operators

856.2.2
Handling Lifecycles

856.2.3
Handling Guidance Elements

856.2.4
Process Enactment Traceability

856.3
Handling Collaboration

866.3.1
The query API

866.3.2
The event API

887.
Conclusion

908.
References

Table of APPLICABLE DOCUMENTS

	N°
	title
	Reference
	Issue
	Date
	Source

	
	
	
	
	
	Siglum
	Name

	
	
	
	
	
	
	

Table of ReferenceD DOCUMENTS

	N°
	title
	Reference
	Issue

	
	
	
	

	R1
	Galaxy glossary
	
	

	R2
	Deliverable D2.4.1 - Collaborative MDE Process Modeling
	
	

ACRONYMS AND DEFINITIONS
Except if explicitly stated otherwise the definition of all terms and acronyms provided in [R1] is applicable in this document. If any, additional and/or specific definitions applicable only in this document are listed in the two tables below.
Acronymes
	Acronym
	DESCRIPTION

	
	

	
	

	
	

	
	

Definitions

	TERMS
	DESCRIPTION

	
	

	
	

	
	

	
	

1. Introduction
1.1 Goal of this document
The present document is the second and the final deliverable of the task T2.4 of the Galaxy work package WP2. As stated in the Galaxy proposal, the objective of this task is to define concepts and a methodology for modeling processes that govern model-driven collaborative development, the final aim being to provide a computer-assisted enactment based on such process models.

As stated in the D1.2.2 Galaxy Glossary deliverable, process enactment is the action of carrying out a process according to the process model, i.e. a computer-based execution of a process model that involves both automatic execution of activities and human execution.

Rather than “process execution”, the term “enactment” is used to be neutral between interpretation and compiled execution and to indicate that both human and computerized agents are involved in carrying out the process.

The conventional approach to process enactment consists in providing a Process-centered System Engineering Environment (PSEE) that is meant to support the development process. The process model specifies how people should interact and work, how and when automated tools are activated or invoked. The PSEE takes then as input a process model and "behaves" according to what it is defined within the model. The PSEE offers a variety of services such as automation of routine tasks, invocation and control of development tools, enforcement of mandatory rules and practices, management of artifacts, and assistance to developers based on guidance knowledge incorporated to the process model.
The D2.4.1 deliverable specifies a metamodel for modelling structural aspects of collaborative MDE processes, called CM_SPEM (Collaborative Model-based Software & Systems Process Engineering Metamodel). The focus has been made on structural and static issues of collaborative MDE processes, including model-driven, viewpoint, and collaboration aspects.
The present deliverable addresses the dynamic issues that relate to process enactment assistance, and methodological issues that relate to process designer assistance. The aim is twofold. The first aim is to complete the CM_SPEM metamodel so as to provide concepts for modeling process behavior which can be exploited for assisted process enactment. The second aim is to elaborate a conceptual approach for collaborative MDE process modeling and enactment, which may be implemented as a PSEE toolkit to be integrated into the Galaxy’s framework.

The CM_SPEM metamodel specified in the D2.4.1 comes in the form of a package, called CM_SPEM::Process_Structure, which extends SPEM2.0 [OMG, 2008-a]. It contains three sub-packages called MDE_Process_Structure, Collaboration_Structure, and Viewpoint_Structure, which add concepts for handling model-driven, viewpoint, and collaboration aspects, respectively. The present document completes these packages with a new package, called CM_SPEM::Process_Behavior, which merges the CM_SPEM::Process_ Structure package. It adds concepts for modeling dynamic aspects of collaborative MDE processes. The QVT metamodel [OMG, 2008-b] is imported for modeling model transformations behavior.
Regarding the Galaxy’s conceptual approach for collaborative MDE process modeling and enactment, the present document depicts a view-based methodological approach for assisted process modeling, and a conceptual specification for assisted process enactment.
1.2 Document organization

The rest of this document is organized into six main sections. Section 2 gives a general overview of the CM_SPEM metamodel. It recalls the structure of the CM_SPEM::Process_Structure package depicted in the D2.4.1 deliverable, and shows the dependencies between all sub-packages including those reused from the SPEM2.0 and the QVT metamodels. Section 3 deals with MDE process behavior and viewpoint process behavior modeling. Section 4 deals with collaborative process behavior modeling. Section 5 depicts a view-based methodological approach for assisted process modeling. Section 6 gives a conceptual specification for assisted process enactment.
2. CM_SPEM OVERVIEW
The Collaborative Model-based Software & Systems Process Engineering Metamodel (CM_SPEM) addresses both structural and behavioral aspects of software and systems engineering processes. It extends SPEM2.0 and reuses QVT to take into account MDE, viewpoint, collaboration, and behavioral aspects. It contains two main packages: Process_Structure, and Process_Behavior, which are linked by merge relationships as shown by Figure 1.
As specified in the D2.4.1 deliverable, the CM_SPEM::Process_Structure merges the SPEM2::Process_Strtucture and the SPEM2::Process_With_Methods packages, and is itself subdivided into three sub-packages: MDE_Process_Structure, Collaboration_Structure, and Viewpoint_Structure. All these packages and their relationships are depicted by Figure 2.

If we refer to the SPEM2.0 specification [OMG, 2008-a], we have the SPEM sub-packages dependencies depicted by figure 3. So, by transitivity of the “merge” relationship, the CM_SPEM::Process_Behavior package merges all the following sub-packages: SPEM2.0::Core, SPEM2.0::Process_Structure, SPEM2.0::Method_Content, SPEM2.0::Managed_Content, and SPEM2.0::Process_With_Methods.

Finally, let us mention that CM_SPEM::Process_Behavior contains two sub-packages: MDE_Process_Behavior, and Collaboration_Behavior, as depicted by figure 4. These two packages are detailed in the following sections.
[image: image1.png][cm_sPEM
[Process_Structure <cmerge>> [SPEM2.0

7
<merge>> |

[Process Behavior «merge>>

Figure 1 - CM_SPEM main packages dependency
[image: image2.png]MDE_Process_Structure SPEMZ.0:-Process_Structure
<emerge»>
i
<cemergen> |
[Collaboration_Structure
e D
<emerge»>

)
<cmerge> |
I

wpoint_Structure

Figure 2 - The CM_SPEM::Process_Structure sub-packages dependencies
[image: image3.png]ManagedContent

ods.

P

«merge

ProcessStructure

Figure 3 - The SPEM2.0 sub-packages dependencies
[image: image4.png][CM_SPEW::Process Behavior

[MDE Process Behavior <merge»> [QUT-QVTBase

- -3

7
<merge>> |

[Collaboration_Behavior

Figure 4 - The CM_SPEM::Process_Behavior sub-packages dependencies
3. CM_SPEM MDE Process Behavior
3.1 Introduction
The objective of the CM_SPEM::MDE_Process_Behavior package is to extend the CM_SPEM::Process_Structure metamodel (defined in the D2.4.1 deliverable) with capabilities for process enactment. The main idea is to add concepts for describing temporal information, and MDE process elements’s behavior in terms of state machines and enactment operators. Regarding MDE process elements that describe model transformations, the QVT metamodel is reused in order to describe their behavior in QVT-compliant languages.
The CM_SPEM::MDE_Process_Behavior package is decomposed into six sub-packages named: Plannable Work Breakdown Elements, Enactable Process Elements, Events, Tool Assignment, Transformation Behavior, and Managed Guidance. Each sub-package is related to a particular concern as discusses in the following sections.
3.2 Plannable Work Breakdown Elements
This package adds temporal information for work breakdown elements that need to be planned over time. As shown by Figure 5, it defines the concept of PlannableWork as a generalization of Activity, TaskUse, Step, and ActorSpecificTask, which must have a start date, and a duration. It also extends the concept Milestone by adding the deadline attribute.
[image: image5.png]Duration
value: Integer
-+ measureUnit: Stiing

1| +duration

PlannableWork

Tile Stone (from
SPEM::Process_Structure)

-+ starDate: Sting

-+ deadline : String

vity (from TaskUse (from

ity_Structure)| |SPEM:Process With Methods)|

SPEM:Method_Content)|

Step (from

Figure 5 - Plannable work breakdown elements
3.3 Enactable Process Elements
As shown by Figure 4, this package defines process elements that may have a behavior for process enactment. It reuses concepts from the CM_SPEM packages MDE_Process_Structure and ColaborationStructure, and the SPEM pacakges Process_With_Methods and Managed_Content. It introduces the concept of ToolUse as a new breakdown element, and the concept of EnactableProcessElement as a generalization of all process elements that may have a behavior for process enactment defined through a state machine specification.
[image: image6.png]Process (from
CM_SPEM:ViewpointStructure)

CM_SPEM:

Model (from
DE Process Structure:

lodel Structure)

fcArtefact (from

%

Activity (from

CM_SPEM:MDE_Process_Structure::
Activity Structure)

Classifier (from

UML::Contsructs)

TaskUse (from
:Process With Methods)

SPE

CM_SPEM::Collaboration Structure)

Step (from
ethod_Content)

EnactableProcessElement] '

ToolUse
+commandLine: String

WorkProductlise (from RoleUse (from SPEM::Process
SPEM::Process Structure) Structure)
WileStone (from
SPEM::Process Structure)
EnactableProcessElement T
(CM_SPEM:Collaboration Structure)
ance (from TransformationUse (from
lanaged Content)) :Transformation Structure}) ActorSpecificTask (from
ICM_SPEM:Collaboration Structure)

BreakdownEfement (from

SPEM:Process Structure)

01 [ProcessStateMachine

StateMachine (from

1 ¥ +pracessElement

+operators

+processElement

UML::BehaviorStateMachines)

+ifecycle

[EnactmentOperatos

Operation (from UML::Classes)

Figure 6 - Enactable Process Elements
3.3.1 Activity

Super Class
· EnactableProcessElement

Description
Activity (from CM_SPEM::MDE_Process_Structutre::Activity_Structure) defines basic units of work within a process. As an EnactableProcessElement, it is extended with capabilities for enactment.
Semantics

An Activity may have a state and a set of enactment operators that human actors may execute at enactment time. As an EnactableProcessElement, an Activity may have a lifecycle that defines its different states and enactment operators.

Figure 7 shows an example of lifecycle one may associate to an Activity. Examples of states are: Enactable (meaning that the Activity is ready for enactment, Activatable (meaning that the Activity may start), Ongoing (meaning that the Activity is being performed), Fnished (meaning that the Activity is terminated), etc. Examples of enactment operators are: launch (i.e. declare that the activity is started, finish (i.e. declare that the activity is finished), etc.

[image: image7.png]create

Enactable)

[precondition & precedence]

(Activatable)

launch
(Ongoing)
finish

validate

Validated

invalidate

/
Tnvalidated

Figure 7 - Example of Activity lifecycle

3.3.2 Actor

Super Class
· EnactableProcessElement

Description
Actor (from CM_SPEM::CollaborationStructure) represents a specific human participant in a project. As an EnactableProcessElement, the class Actor is extended with capabilities for enactment.

Semantics

An Actor may have a state and a set of enactment operators that the human it represents may execute at enactment time. As an EnactableProcessElement, an Actor may have a lifecycle that define its different states and enactment operators. Figure 8 shows an example of an Actor lifecycle regarding a given Activity. Examples of states are: Not-Allocated (meaning that the Actor is not allocated to the Activity), and Allocated (meaning that the Actor is allocated to the Activity). Examples of enactment operators are: log-in, log-out.

[image: image8.png]create

Not-Allocated

allocate

TotLogged

Allocated

logrin

destioy

og-out

deallocate

deallocate

logrin

allocate

destioy

Figure 8 - Example of Actor lifecycle
3.3.3 ActorSpecificArtifact

Super Class
· EnactableProcessElement

Description

ActorSpecificArtifact (from CM_SPEM::CollaborationStructure) represents a copy of a WorkProductUse in an actor’s workspace. As an EnactableProcessElement, it is extended with capabilities for enactment.

Semantics

The copy of a WorkProductUse manipulated by an Actor may have a state and a set of enactment operators defined through its associated lifecycle. The example of Model lifecycle shown by Figure 10

 REF _Ref292436638 \h
 may be associated to an ActorSpecificArtifact as well.
3.3.4 ActorSpecificTask

Super Class
· EnactableProcessElement

Description
ActorSpecificTask (from CM_SPEM::CollaborationStructure) represents the work to be done by a single actor in the context of a specific TaskUse. ActorSpecificTask inherits from EnactableProcessElement to extend it with capabilities for enactment.
Semantics

The work to be done represented by an ActorSpecificTask may have a state and a set of enactment operators defined through its associated lifecycle. The example of Actvity lifecycle shown by Figure 7 may be associated to an ActorSpecificTask as well.
As an EnactableProcessElement, an ActorSpecificTask may have a lifecycle that defines its different states and enactment operators.

3.3.5 EnactableProcessElement

Super Class
· Classifier (from Constructs in UML 2 Infrastructure)
Description
EnactmentProcessElement is an abstract class that generalizes all process elements that have capabilities for enactment.

Capabilities for enactment are defined in CM_SPEM as the ability of having states and a set of enactment operators that human actors may execute. These states and enactment operators must be defined through lifecycles associated to enactable process elements.
Association properties

· lifeCycle: ProcessStateMachine. Specifies zero or one state machine that describes the behavior of the EnactableProcessElement.

· operators: EnactmentOperator. Specifies a set of enactment operators associated to the EnactableProcessElement.

3.3.6 EnactmentOperator

Super Class
· Operation (from UML::Classes)
Description
EnactmentOperator defines an operator that actors may apply on an EnactableProcessElement at enactment time.

Association properties

· processElement: EnactableProcessElement. Specifies the process element that the operator may be applied on.
· precondition (from UML::Classes): Constraint (from UML::Constructs). Defines an optional set of constraints that should hold when the EnactmentOperator is invoked.
Semantics

Examples of EnactmentsOperators are those shown by the example of Activity lifecycle depicted by figure 7: launch, finish, validate, and invalidate.
EnactmentOperators that are associated to different process elements and have the same name do not necessarily share the same semantics.
3.3.7 Guidance

Super Class
· EnactableProcessElement

Description
Guidance (from SPEM::Managed_Content) represents information associated to a process element intended to provide useful assistance at enactment time. Examples for Kinds of Guidance are: guidelines, templates, checklists, patterns, etc. Guidance inherits from EnactableProcessElement to extend it with capabilities for enactment.

Semantics

A Guidance may have a state and a set of enactment operators that human actors may execute at enactment time. As an EnactableProcessElement, a Guidance may have a lifecycle that defines its different states and enactment operators.

Examples of states are: used (meaning that the Guidance has been effectively used), and not-used (meaning that the Guidance has been ignored). Examples of enactment operators are: apply (for patterns), check (for checklists), etc.

3.3.8 Milestone

Super Class
· EnactableProcessElement

Description
Milestone inherits from EnactableProcessElement to extend the class Milestone (from SPEM::Process_Structure) with capabilities for enactment.

Semantics

A Milestone may have a state and a set of enactment operators that human actors may execute at enactment time. Examples of states and enactment operators one may associate to a Milestone are shown by Figure 9.
As an EnactableProcessElement, a Milestone may have a lifecycle that defines its different states and enactment operators.

[image: image9.png]validate

o

velidate

O (P e v, o arag

create

invalidate

invalidate

HotReached

Figure 9 - Example of Milestone lifecycle
3.3.9 Process

Super Class
· Activity (from CM_SPEM::MDE_Process_Structure::Activity_Structure)
Description
A Process (from CM_SPEM::ViewpointStructure) is a special Activity that describes a structure for particular types of development projects or parts of them. As an Activity, and also as an EnactableProcessElement, it is extended with capabilities for enactment.

Semantics

A Process is a special Activity that describes a structure for particular types of development projects. To perform a given development project, a Process would be adapted for the specific organizational and project situation and then tailored by assigning concrete resources needed for development.

In the context of Galaxy, a Process is associated with Viewpoints which denote the perspective from which the process is considered, and each Process/Viewpoint association is linked to a ViewpointProcess which describes a sub-process corresponding to the Viewpoint.
A Process may have a lifecycle that defines its different states and enactment operators. The example of Activity lifecycle depicted by figure 7 may be associated to a Process as well.

3.3.10 Model

Super Class
· EnactableProcessElement

· WorkProductUse (from SPEM::Process_Structure)

Description
Model (from CM_SPEM:: MDE_Process_Structutre::Model_Structure) either represents a performer of an Activity, a participant of an Activity, a performer of a TaskUse, or a performer of a Step, and is linked to at least one Actor. It inherits from EnactableProcessElement to extend it with capabilities for enactment.

Semantics

As an EnactableProcessElement, a Model may have a lifecycle that defines its different states and enactment operators. An example of a Model lifecycle is shown by Figure 10. Examples of states are: Initial (meaning that the WorkProductUse is created), DraftVersion, ReviewedVersion, etc. Examples of enactment operators are: edit, review, finish, etc.

[image: image10.png]create

edit
DraftVersion
review edit
ReviewedVersion
finish,
validate invaliciate

Validated Tnvalidated

Figure 10 - Example of Model lifecycle
3.3.11 ProcessStateMachine

Super Class
· StateMachine (from UML::BehaviorStateMachines)
Description
ProcessStateMachine is a StateMachine (from UML::BehaviorStateMachines) which is restricted to discard features that are not useful for describing enactable process elements behavior. The discarded features are defined by the constraints below.
Association properties

· processElement: EnactableProcessElement. Specifies the process element whose lifecycle is described by the ProcessStateMachine.

Constraints

· A ProcessStateMachine has no SubmachineState, i.e. all states have their attribute isSubmachineState set to false.

· A ProcessStateMachine has only one Region.
3.3.12 RoleUse

Super Class
· EnactableProcessElement

Description
RoleUse (from SPEM::Process_Structure, SPEM::Process_With_Methods, CM_SPEM::CollaborationStructure) either represents a performer of an Activity, a participant of an Activity, a performer of a TaskUse, or a performer of a Step, and is linked to at least one Actor. It inherits from EnactableProcessElement to extend it with capabilities for enactment.

Semantics

Figure 11 shows an example of lifecycle one may associate to a RoleUse. In this example, the enactment operator assign is applied to assign the RoleUse to an Actor. Examples of states are Performing (meaning that the Actor has brought some contribution to the work associated to the RoleUse), Not-Performed (meaning that the work associated to the RoleUse has been finished with no contribution of the Actor), etc.
As an EnactableProcessElement, a RoleUse may have a lifecycle that defines its different states and enactment operators.

[image: image11.png]assign

[Actor contributes to the associated work]

Assigned

[Associated workis finished without Actor's contrioution]
(Performing)

[Associated workis finished]

[Actor's cortribution is invalidated]

erformed; ToBeChecked)

[Actor's contribution is validated]

(Performed)

Figure 11 - Example of RoleUse lifecycle

3.3.13 Step

Super Class
· EnactableProcessElement

Description
Step (from SPEM::Method_Content) describes a meaningful and consistent part of the overall work described for a TaskUse (via its associated TaskDefinition). Step inherits from EnactableProcessElement to extend the class Step with capabilities for enactment.
Semantics
As an EnactableProcessElement, a Step may have a state and a set of enactment operators, defined through its associated lifecycle. The example of Actvity lifecycle shown by Figure 7 may be associated to a Step as well.

3.3.14 TaskUse
Super Class
· EnactableProcessElement

Description
TaskUse (from SPEM::Process_With_Methods) represents a proxy for a Task Definition in the context of a specific Activity. TaskUse inherits from EnactableProcessElement to extend it with capabilities for enactment.

Semantics

As an EnactableProcessElement, a TaskUse may have a state and a set of enactment operators defined through its associated lifecycle. The example of Actvity lifecycle shown by Figure 7 may be associated to a TaskUse as well.
3.3.15 TransformationUse

Super Class
· EnactableProcessElement

Description
TransformationUse (from CM_SPEM:: MDE_Process_Structutre::Transformation_Structure) represents a piece of work within a model-based development process that defines how one set of models can be transformed into another model. It inherits from EnactableProcessElement to extend it with capabilities for enactment.

Semantics
As an EnactableProcessElement, a TransformationUse may have a state and a set of enactment operators defined through its associated lifecycle. As specified by the package CM_SPEM::Transformation_Behavior (see section 3.6), a TransformationUse may be implemented by a QVT transformation. An example of TransformationUse lifecycle is shown by Figure 12. Examples of states are: Startable (meaning that TransformationUse’s precondition and precedence hold and therefore its QVT implementation can be executed), Running, etc. Examples of enactment operators are: execute, validate, etc.
[image: image12.png]create

Enactable)

[precondition & precedence]

execute

Running)

[execution is terminated]

Finished

validate

invalidate

Figure 12 - Example of TranformationUse lifecycle
3.3.16 ToolUse

Super Class
· BreakwownElement

· EnactableProcessElement

Description
ToolUse represents a tool to be used for a given work (i.e. Activity, Task Use, Step, Transformation Use, or Actor Specific Task) within an MDE process.

As a Breakdown Element, it may be nested by an Activity. As an Enactable Process Element it is extended with capabilities for enactment.

Attributes
· commandLine: String. This attribute specifies the command line to be executed at enactment time for launching the tool represented by the ToolUse.
Semantics
As an EnactableProcessElement, a ToolUse may have a state and a set of enactment operators defined through its associated lifecycle. Figure 13 shows an example of lifecycle one may associate to a ToolUse that represents a given tool. In this example, the states are: Required (meaning that the tool is required for a given work), Used (meaning that the tool has been used for performing the associated work), and Not-Used (meaning that the associated work has been done without using the tool).
As an EnactableProcessElement, a RoleUse may have lifecycles that define its different states and enactment operators.

[image: image13.png]create

[Toolis apened for performing the associated work]

[Associated workis finished

Figure 13 - Example of ToolUse lifecycle
3.3.17 ViewpointProcess
Super Class
· EnactableProcessElement

Description
From CM_SPEM::ViewpointStructure, a ViewpointProcess is a process related to a given viewpoint on a more global Process. It specializes EnactableProcessElement to extend it with capabilities for enactment.

Semantics
A ViewpointProcess is a sub-process of a given process and is an enactableProcessElement as an activity, since a process is an activity. Thus it may have a state and a set of enactment operators defined through its associated lifecycle. The example of Activity lifecycle shown by figure 7 may be associated to a ViwpointProcess as well.
3.3.18 WorkProductUse

Super Class
· EnactableProcessElement

Description
WorkProductUse (from SPEM::Process_Structure) represents an artifact used, produced, or modified by a work item (i.e. Activity, TaskUse, Step, or ActorSpecificTask).

WorkProductUse inherits from EnactableProcessElement to extend it with capabilities for enactment.
Semantics
As an EnactableProcessElement, a WorkProductUse may have a state and a set of enactment operators defined through its associated lifecycle. The example of Model lifecycle shown by Figure 10 may be associated to a WorkProductUse as well.

3.4 Events
This package contains concepts which structure communication between enactable process elements. It reuses the Event concept from UML::CommonBehaviors::Communication (and derived classes), and mainly introduces the concepts of EventDispatcher, EventListener, and EventListening (see Figure 14).
[image: image14.png]lUML::Behavior StateMachines)|

0.1

+igger

Trigger (from
UML::CommonBehaviors::

, +dlispachedEvents

Event (from
UML::CommonBehaviors:

Communications)

vevent

Communications)

OperatorEvent

i
event

+oldState,
1

State (from

UML::Behavior StateMachines)

177 mnewstate

+conditions
T
Constraint (from

ProcessStateChangeEvent] *

+source |, 1 /

EnactableProcessElement (from
Enactable_Process Elements)

veventListener /1.4

seventlistening | oy an istening
/1
EventListening

EventListener

EventDispacher

1 | +operstor

EnactmentOperator (from

[Enactable_Process Elements)|

1§ -orocsssetement

+operators

AN Classifier (from UML)
R —

+eventListening

1

+eventDispacher

Figure 14 - The CM_SPEM Events package
3.4.1 CondionalEvent

Super Class

· Event (from UML::CommonBehaviors::Communications)
Description
ConditionalEvent defines an event that is raised when certain Boolean-valued conditions become true.
Association properties

· conditions: Constraint (from UML::Contsructs). The set of conditions that must become true for raising the ConditionalEvent.

Semantics

A ConditionalEvent allows for triggering transitions of lifecycles of EnactableProcessElements, automatically, whenever a set of conditions become true. For example, let us consider the Activity lifecycle shown by figure 7. Transition from the Enactable state to the Activatable state of an Activity is triggered whenever the conditions [precondition & precedence] become true, meaning that the Activity can then be launched.
Notation

A ConditionalEvent is shown on state machines describing EnactableProcessElements’ lifecycles as a textual description of the associated conditions that conforms to the following BNF definition:

<ConditionalEvent>
::= ‘[‘<condition> (‘&’ <condition>)* ‘]’

where <condition> denotes a text describing a condition expressed in natural language or in a machine readable language.
3.4.2 EnactableProcessElement

Super Class

· EventListener

· EventDispatcher

Description
EnactableProcessElement (from Enactable_Process_Elements) is extended so as to allow it to generate and to react to events.

Semantics

For example, an EnactableProcessElement that have a lifecycle may generate events related to its state change (see section 3.4.8). It can also subscribe for listening events related to other EnactableProcessElements’ state change. This allows for setting event-based communication between process elements, including the whole process as well.
3.4.3 Event

Super Class

· Classifier (from UML)

Description
Event (from UML::CommonBehaviors::Communications) is an occurrence than may trigger a reaction, if an appropriate event listening has been defined (see EventListening bellow).

Association properties

· eventListenings: EventListening. The set of all event listening specifications where this event appears.

Semantics

An event is an occurrence of something of interest. Events have parameters, and parameter values describe the event. Events are raised by EventDispatchers (see section 3.4.4), intercepted by EventListenings which are in charge of notifying EventListeners of events (see section 3.4.2), and reacted to by EventListeners when they are S (see section 3.4.3).

3.4.4 EventListening

Super Class

· Classifier (from UML)

Description

An event listening is a subscription to a group of events.
Association properties

· event: Event. The event that is being subscribed to.

· eventDispatcher: The dispatcher that is expected to raise the event

· eventListener: The listener that should be notified when the event occurs

Semantics

This is a conceptualization of the subscription made by an event listener, to a group of event instances, on an event dispatcher. Event instances of the specified class, which occur after the subscription, are sent to the event listener, if, and only if, they are raised by the specified event dispatcher. For each combination of event class and event dispatcher, several instances of event listening can be defined.

3.4.5 EventListener

Super Class

· Classifier (from UML)

Description

An EventListener is a model element which can react to events.

Semantics

A listener can receive events and react to them. To be able to receive an event, a listener must have already been subscribed to an event class prior to the occurrence of the event (through an EventListening). Only events of the classes subscribed to are sent to an event handler.
3.4.6 EventDispatcher

Super Class

· Classifier (from UML)

Description

An EventDispatcher is a model element which can generate events.

Association properties

· eventListenings: EventListening. Specifies the set of event listening specifications where the dispatcher is referenced.

· dispatchedEvents: Event. Specifies the set of all events which the dispatcher is able to generate (trigger).

Semantics

An EventDispatcher is any element of a CM_SPEM model which can trigger events. Generally speaking, an EventDispatcher triggers an event to inform possible listeners of a change in its internal state.
3.4.7 OperatorEvent
Super Class

· Event (from UML::CommonBehaviors::Communications)
Description
OperatorEvent defines an event that is raised when an EnactmentOperator is applied on the EnactableProcessElement it belongs to.

Association properties

· operator: EnactmentOperator (from Enactable_Process_Elements). Indicates the EnactmentOperator applied.

Semantics

An OperatorEvent should be used for informing EnactableProcessElements of application of EnactementOperators by actors. This allows for triggering transitions associated with such events. For instance, if we consider the Activity lifecycle shown by figure 7, and supposing that the launch operator is mapped into a menu item within a process enactment environment, an OperatorEvent will be sent to the Activity whenever this menu item in clicked on.
Notation
A OperatorEvent is shown on state machines that describe lifecycles of EnactableProcessElements as a textual description which conforms to the following BNF definition:

<OperatorEvent>
::= [<precondition>] <EnactmentOperator name>
<precondition>
::= ‘[‘<condition> (‘&’ <condition>)* ‘]’

where <precondition> corresponds to the precondition of the EnactmentOperator (as specified in see section 3.3.5), <condition> denotes a text describing a condition expressed in natural language or in a machine readable language, and <EnactmentOperator name> the name of an EnactmentOperator.
3.4.8 ProcessStateChangeEvent
Super Class

· Event (from UML::CommonBehaviors::Communications)
Description
ProcessStateChangeEvent represents a state change of an EnactableProcessElement.

Association properties

· source: EnactableProcessElement (from Enactble_Process_Elements). Indicates the EnactableProcessElement whose state has changed.

· oldState: State (from UML::BehaviorStateMachines). The old state of the source EnactableProcessElement.

· newState: State (from UML::BehaviorStateMachines). The new state of the source EnactableProcessElement.
Notation

A ProcessChangeEvent is shown on state machines describing lifecycles of EnactableProcessElements as a textual description which conforms to the following BNF definition:

<ProcessChangeEvent>
::= ‘[‘ <source name> ‘:’ <old state> ‘->’ <new state>’]’
where <source> denotes the name of an EnactableProcessElement, <old state> the name its old state, and <new state> the name of its new state.

3.4.9 Event handling mechanism

The event handling mechanism is the process which starts when an event is generated, till all registered event listeners execution has ended. For the purpose of explaining this mechanism, the concepts of “event-based containment hierarchy” and “event bubbling” need to be defined.

3.4.9.1 Event-based containment hierarchy

A simple containment link is defined between model elements in CM_SPEM. Each model element has at most one “parent” element. Elements with no parent element are said to be “top-level elements”. If an element A is the parent of an element B, B is said to be a “child element” of A. An element A is said to be an “ancestor” of an element B if and only if A is the parent of B, or there exists an element C such that C is the parent of B and A is the ancestor of C.
A sample containment hierarchy is shown in Figure 15. B is the parent of A and E is the parent of D. B, C, and F are all ancestors of A. A and D for example are not related (neither by a parent relationship, nor by an ancestor relationship).
[image: image15.png]

Figure 15 - A sample containment hierarchy

Containment links in CM_SPEM, for collaboration-related elements, are based on the following rules:

· An ActorSpecificArtifact is contained in the WorkProductUse it represents
· An ActorSpecificTask is contained in the TaskUse it contributes to
· An actor is contained in the RoleUse it is associated with
· A WorkProductUse and a RoleUse are contained in any TaskUse they are associated with.
· An ActorSpecificArtifactRelationship is contained in the corresponding WorkProductUse if the two ActorSpecificArtifacts that participate in the relationship represent the same WorkProductUse. Otherwise, the relationship is contained in the whole process model.
· An ActorSpecificTaskRelationship is contained in the corresponding TaskUse if the two ActorSpecificTasks that participate in the relationship contribute to the same TaskUse. Otherwise, the relationship is contained in the whole process model.
· An ActorRelationship is contained in the whole process model.

3.4.9.2 Event bubbling

An event can be handled, not only by handlers defined on the event source, but also by listeners defined on any ancestor of the event source. This is because an event triggered on an element will also be triggered on all its ancestors. The event is said to “bubble” upwards.
The generation and handling of events can be illustrated with the following sample event handling sequence (see Figure 16).
[image: image16.png]—

event bubbing direction

s2
EventDispatcher)

H2
(EventListener)

S1's parent
|(EventDispatcher)

s1

(EventDispatcher)

L2
(EventListening)

eventDispatcher: $2
eventListener: H2
event: E

L1

(Eventistening)

eventDispatcher: S1
eventListener: H1
event: E

Figure 16 - Sample event handling sequence. Blue arrows show the flow of execution during event handling.

E is an event class, and e is a specific event of class E. H1 and H2 are event listeners. S1 and S2 are event dispatchers, and S2 is an ancestor of S1. L1 and L2 are event listening specifications.

1. L1 is defined as an event listening on S1, for events of class E, with the listener set to H1. L2 is defined as an event listening on S2, for events of class E, with the listener set to H2. The order in which the listening elements L1 and L2 are defined does not matter. The only requirement is that L1 and L2 be defined before the event e occurs.
2. The event e (of class E) occurs, and S1 is its original source.
3. Defined listening elements with the source set to S1 are checked. For each one whose event type is set to E, the associated listener is called, with the parameters of the specific event e. In this case, H1 is the only listener which matches. If several listeners were defined, they will be called in the order of definition.
4. All the listeners called in the previous step finish execution. In this case, the execution of H1 returns.
5. If the listener H1 did stop the propagation of the event e, event handling stops here. If not, the event bubbles up.
6. The event e is sent to the parent element of S1, for handling. The procedure in step 3 is repeated for all listening specifications defined on the parent element (that is, listening specifications for which the source was set to the parent element). When handling on the parent element returns, the event bubbles up once more.
7. Eventually, the event reaches the ancestor S2 of S1. Event listening specifications with the source set to S2 are checked. For each listening specification with the event class set to E, the associated listener (in this case, H2) is called. Each listener called is provided with the event parameters.

Events can have arbitrary parameters, depending on their class. However, for the generic purpose of event handling and event bubbling, two standard parameters are always transmitted to handlers:
· source: This is the elements (EventDispatcher) on which the listener was defined. When an event bubbles up, this parameter is continually updated: its value is always set to the element on which the currently processed listeners were defined.

· originalSource: This is the element where the event actually occurred, prior to any bubbling. For each event, this parameter stays the same, even when the event is sent to listeners defined on ancestors, during event bubbling. When an event is initially generated by an event dispatcher, originalSource and source are identical. They differ only during event bubbling, as the event is handled by listeners defined on ancestors of the original event dispatcher.
3.5 Tool Assignment
This package (see Figure 17) defines links between ToolUse and other enactable process elements. It merges the Enactable_Process_Elements package and imports the concepts ToolDefinition from the SPEM::Method_Content package, and ExtensibleElement from SPEM::Core.
[image: image17.png]+oal

ExtensibleElement (from

ToolAssignment

+linkedProcessElements

EnactableProcessElement (from

[+ Kind: ToolAsignmentKind

lAssignments | =

+usedTool | 1

Enactable_Process Elements)

+oalAssignments

ToolUse (from
[Enctable_Process Elements

- 0.1 ToolDefinition (from

SPEM:Method_Content)

. +oalDefinition

Figure 17 – The CM_SPEM Tool Assignment package
3.5.1 EnactableProcessElement
Super Class
No additional super class.

Description
The abstract class EnactableProcessElement (from Enactable_Process_Elements) is extended its to provide its concrete classes with capabilities of specifying tools to be used for enactment of enactable process elements.

Association properties

· toolAssignments: ToolAssignment. This attribute specifies a set of tool assignments for the EnactableProcessElement. Each tool assignment indicates the tool assigned for enactment of the process element, and the kind of the assignment as defined in section 3.5.2.
Semantics

Tool assignment does not necessarily make sense for any concrete class of EnactableProcessElement (e.g., assignment of a tool to another one, assignment of a tool to a guidance, etc). However, no restriction is made and therefore process designers have to decide for each type of enactable process element whether a tool assignment makes sense or not. The following Figure 18 shows the semantics for tool assignment defined by default in CM_SPEM.

	Enactable Process Element
	Semantics for tool assignment

	Activity
	Tools to be used for enacting the Activity, including:

-
All the tools assigned to the nested sub-Activities

-
All the tools assigned to the nested Transformations

-
Subset of tools assigned to the WorkProductUse linked to the Activity’s parameters
-
Subset of tools assigned to the RoleUses linked to the Activity’s performers

	Actor
	Tools used by the Actor while performing the process.

	ActorSpecificTask
	Tools to be used for performing the ActorSpecificTask.

	Model
	Tools used for creating and/or modifying the Model.

	TransformationUse
	A tool to be used for executing the transformation that implements the TransformationUse.

	RoleUse
	Tools to be used by an Actor who plays the RoleUse

	Step
	Tools to be used for performing the Step.

	TaskUse
	Tools to be used for performing the TaskUse.

	WorkProductUse
	Tools used for creating and/or modifying the WorkProductUse.

Figure 18 - Possible semantics for tool assignment
3.5.2 ToolAssignment
Super Class
· ExtensibleElement (from SPEM::Core)

Description
ToolAssignment defines the assignment of a tool represented by a ToolUse to an EnactableProcessElement. As an ExtensibleElement, it may be associated with Kind class (from Core) instances to specify the nature of this assignment (e.g., the tool is required, the tool is recommended, the tool is optional, etc.)
Association properties

· toolAssignments: ToolAssignment. Specifies a set of tool assignments for the EnactableProcessElement. Each tool assignment indicates the process elements the tool is assigned to, and the kind of the assignment as defined in section 3.5.2.
· usedTool: ToolUse (from Enactable_Process_Elements). Specifies the tool used for the ToolAssignment.
3.5.3 ToolUse

Super Class
No additional super class.

Description
ToolUse (from Enactable_Process_Elements) is extended to specify its assignments to other Enactable Process Elements.

Association properties

· toolAssignments: ToolAssignment. Specifies a set of tool assignments for the EnactableProcessElement. Each tool assignment indicates the process elements the tool is assigned to, and the kind of the assignment as defined in section 3.5.2.
· toolDefinition: ToolDefinition (from SPEM::Method_Content). This association links a ToolUse to zero or one ToolDefinition which describes the capabilities of the tool represented by the ToolUse.
3.6 Transformation Behavior
As shown by Figure 19, this package mainly defines the concept of TransformationImplementation that specifies an implementation of a transformation to be used in an MDE process. Transformation may be implemented in any appropriate language. The QVT Transformation concept is extended so as a TransformationUse implementation may be described in any QVT-compliant language.
[image: image18.png]N Hetamodel (from . .
1% |c_SPEN:MDE Process. Structu metaModelDefinition

~ Model Structure)
- +metamodels 1
Package (from

TransformationUse (from 1 [+parameterType
|CI_SPEM::MDE_Process_Structure:

Transformation_Structure) [RSa] 1.% | typedParameters

P Hodel (from N
:MDE_Process_Structure:: 1

N ~ Model Structure) +usedPackage

0.1 | vimplementation *Parameters

[Transformationimplementation Z}

+lenguege: Sting +modslParameter [Typediodsl (from

-+ body: String QUT::QUTBase)

0.1 T +ypedodel

NamedElement (from « | +dormain

Domain (from

QUT::QVTBase)

« [+domain

Transformation (from | 1

QUT:QVTBase)

venstomaton 14 e

« Rule (from
QUT::QUTBase)
-+ description: Sting

“uansformation ? 1

+rule

Figure 19 - The CM_SPEM Transformation Behavior package
3.6.1 Domain

Super Class
No additional super class.

Description
Domain (from QVT::QVTBase) specifies a set of model elements of a typed model that are of interest to a rule. Domain is an abstract class whose concrete subclasses are responsible for specifying the exact mechanism by which the set of model elements of a domain may be specified. It may be specified as a pattern graph, a set of typed variables and constraints, or any other suitable mechanism (see [OMG, 2008-b] for more details).
Association properties
· rule(from QVT::QVTBase): Rule. The rule that owns the Domain.

· typedModel(from QVT::QVTBase): TypedModel. The typed model that contains the types of the model elements specified by the Domain.
3.6.2 Rule
Super Class
No additional super class.

Description
Rule (from QVT::QVTBase) specifies how the model elements specified by its domains are related with each other, and how the model elements of one domain are to be computed from the model elements of the other domains. Rule is an abstract class whose concrete subclasses are responsible for specifying the exact semantics of how the domains are related and computed from one another (see [OMG, 2008-b] for more details).
Association properties
· description: String. A textual specification of the Rule.
· domain(from QVT::QVTBase): Domain (from QVT::QVTBase). The domains owned by the Rule.
· transformation(from QVT::QVTBase) : Transformation. The transformation that owns the Rule.
3.6.3 Transformation
Super Class
· TransformationImplementation.

Description
A Transformation (from QVT::QVTBase) defines how one set of models can be transformed into another. It contains a set of rules that specify its execution behavior. It is executed on a set of models whose types are specified by a set of typed model parameters associated with the transformation.
As a TransformationImplementation, it may be associated to a TransformationUse as an implementation of the represented transformation, described in a QVT-compliant language.
Association properties

· modelParameter(from QVT::QVTBase): TypedModel (from QVT::QVTBase). The set of typed models, which specify the types of models that may participate in the transformation.

· rule(from QVT::QVTBase): Rule (from QVT::QVTBase). The rules owned by the transformation, which together specify the execution behavior of the transformation.

3.6.4 TransformationUse
Super Class
No additional super class.

Description
TransformationUse (from CM_SPEM::MDE_Process_Structure::Transformation_Structure) specifies a model transformation within a model-based development process. It has a set of parameters transformed which represent models to be transformed, produced, or modified by the transformation. It has also metamodels that the model parameters must conform to.

TransformationUse is extended to allow the specification of its implementation in the desired language.
Association properties

· implementation: TransformationImplementation. This attribute specifies zero or one implementation of the transformation represented by the TransformationUse.
Constraints

As specified in CM_SPEM::MDE_Process_Structure::Transformation_Structure, a TransformationUse may be decomposed into sub-TransformationUses. Only a non-composite TransformationUse must have an implementation.
In the other hand, when a TransformationUse has a QVT implementation described by an instance of Transformation (from QVT::QVTBase), the set of model parameters of the TransformationUse and the set of model parameters of the QVT implementation should be identical.
These constraints are summarized by the following rules:

· A TransformationUse which has subTransformations should not be associated with any TransformationImplementation (through its association implementation).
· A TransformationUse which has no subTransformation should be associated with one TransformationImplementation (through its association implementation).
· If a TransformationUse is associated with a Transformation (through its association implementation), then the set of Models associated with the TransformationUse (through its association parameters) should be identical to the set of TypedModels associated the Transformation (through its association modelParameter).
In addition, a non-composite TransformationUse must have a ToolAssignment that represents a tool able to execute its associated TransfomationImplementation.
Semantics
A TransformationUse which has sub-Transformationuses is called a composite TransformationUse.
At enactment time, the execution of a composite TransformationUse consists in executing each sub-TransformationUse with respects to its precedence and precondition constraints (defined in CM_SPEM::MDE_Process_Structure::Transformation_Structure). So, no additional implementation specification is needed for composite TransformationUse. Its concrete implementation is rather defined through the individual implementation of each sub-TransformationUse.

3.6.5 TransformationImplementation
Super Class
· Named Element (from UML2::Core::Basic).

Description
TransformationImplementation represents an implementation of a transformation to be used in an MDE process. Transformation may be implemented in any appropriate language.
Attributes
· language: String. This attribute specifies a language in which the transformation is implemented (e.g., Kermeta, ATL, etc.).
· body: String. This attribute specifies the code description which implements the transformation.
Semantics
The body of a TransfotmationImplementation associated to a TransformationUse must be executable by the tool assigned to the TransformationUse through the ToolAssignment link (see section 3.5).
3.6.6 TypedModel

Super Class
· Model (from CM_SPEM::MDE_Process_Structure::Model_Structure).

Description
A typed model specifies a named, typed parameter of a Transformation. At runtime, a model that is passed to the Transformation by this name is constrained to contain only those model elements whose types are specified in the set of model packages associated with the typed model.
Association properties

· parameterType(from CM_SPEM::MDE_Process_Structure::Model_Structure): Metamodel (from CM_SPEM Model Structure) {redefines metamodel (from CM_SPEM Model Structure)}. This association specifies Metamodel that the TypedModel conforms to.

· usedPackage: Package (from UML2::Core::Basic) {redefines usedPackage (from QVT::QVT Base)}. The non-empty set of metamodel packages that specify the types for the model elements of the Typed Model.

3.7 CM_SPEM Managed Guidance
The objective of this package is to associate guidance elements to CM_SPEM model elements. As shown by figure 20, it reuses the Guidance concept from the SPEM::Managed_Content package and extends by adding the applicability association property that specifies, in terms of Constraints (from UML::Constructs), situations where a guidance element may be used at enactment time.
[image: image19.png]DescribableElement (from SPEM::Managed_Content]

+quidance

ProcessElement (from
SPEM2.0::Process Structure)

+description 0.1

ContentDescri
SPEM::Managed_Content)
-+ presentationNarme: String *
-+ briefDescription: String
-+ mainDescription: Sting
-+ purpase: Sting

BreakdownElement (from
SPEM2.0::Process Structure)

+applicabilty

(from
onstructs)

Figure 20 - CM_SPEM Managed Guidance package
As specified in SPEM, Guidance should be classified with Kinds that indicates a specific type of guidance for which perhaps a specific structure and type of content is assumed. Examples for Kinds for Guidance are Guidelines, Templates, Checklists, Tool Mentors, Estimates, Supporting Materials, Reports, Concepts, etc.
4. Collaborative Process Behavior Modelling
4.1 Introduction
This section describes collaborative process behavior modeling, using CM_SPEM. It is presented as an extension to the structural modeling of collaboration that is described in the Galaxy D2.4.1 deliverable. This introduction recalls the important concepts from D2.4.1 which we intend to build upon, clarifies the ultimate goal of collaboration modeling in CM_SPEM, and specifies how collaborative behavior modeling (extensively described in later sub-sections) will contribute to that goal.

4.2 Structural collaboration modeling with CM_SPEM
In CM_SPEM, collaboration is structurally described using three central concepts:

· Actor, which stands for a single human participant in a project

· Actor specific task, which represents the contribution of a single actor to a task

· Actor specific artifact, which conceptualizes a private copy of a work product, in the workspace of a specific actor.

Collaboration is described using relationships between these three central concepts. Such description is structural, in the sense that it captures general indications about collaboration setups, that is, the kind of organization that a team chooses to follow. This structure can change in the course of the project, but at any given moment, the content of a CM_SPEM model which uses the afore mentioned central concepts, and relations between them, is purely structural, and does not include descriptions about when things change, how they change, and what happens when they change. Section 4.1.3 explains how these additional concerns will be addressed with behavior modeling.

4.3 What collaboration modeling in CM_SPEM is used for

A CM_SPEM model is, fundamentally, an information repository on a project. It concentrates information about who participates in a project, what is being done, what is consumed and produced, and how people team up to get work done is a central, convenient place. The real usefulness of a CM_SPEM model is thus revealed only when tools actually retrieve specific parts of this information, and use it to provide assistance to project participants.

CM_SPEM models are therefore queried by various external tools. This information fetching can happen in two principal ways:

· A tool can directly request information from a process model, using an API

· A tool can subscribe to some information that may be available later in the model, and the model will send that information (to the tool) when it becomes available.

In other words, communication between tools and CM_SPEM process models is bidirectional. In reality, a process model is data stored in a file, rather than a software agent. It therefore doesn’t make much sense to talk about a process models ‘sending’ or ‘receiving’ a message. Communication will necessarily be implemented by a software agent who acts on behalf of the process model, receiving and sending data to tools, and reading and updating the process models when appropriate. However, we will leave this agent out of the discussion in this section, and conceptually talk about the model ‘sending’ and ‘receiving’ messages: it should be understood that this is only an abuse of terminology, to allow for a simpler description.

Tools are also represented as elements of process models. As such, a process model is ‘aware’ of the tools that exploit it. This allows tools to use the seamlessly use the event-based communication infrastructure that is available to all process elements.

To sum up, CM_SPEM models provide information about the project to tools. These tools will be developed either as native functionalities of a CM_SPEM based PSEE, or as plugins for a kernel which consists of the process model and its communication capabilities. Tools provide assistance to participants, by exploiting data red from the model, or updating the model. They are said to be ‘external’, because while they can be referenced in the process model, their actual description or implementation is independent of the process model.

Nothing is assumed about how many process models are used in a project. A project can have on central process model, which all tools query and modify, perhaps according to some access rights. A setup where each participant can have a process model, which he/she can modify at will, and which can be synchronized with other process models is also conceivable. The issues introduced by such distribution are not deal with here.
4.4 Collaborative behavior modeling in CM_SPEM
This section extends CM_SPEM with the ability to describe issues which are relevant when a project is running.

In practice, dynamic considerations in collaboration can be handled using an action and reaction approach: something happens, some component notice it and react to it. Thus, collaborative modeling in CM_SPEM is handled using an event formalism, based on UML (presented in section 3.4).

4.4.1 Events

Behavioral modeling of collaboration is based on properties and events (see section 3.4). Any model element that subclasses EventDispatcher can generate events and any model element that subclasses EventListerner can listen to events and react to them when they occur. This section documents which events model elements generate or listen to by default.

4.4.2 The need for event bubbling

Event bubbling was defined in section 3.4.5.2. Event bubbling is necessary to account for the evolutionary nature of the description of collaboration, where the model can be enriched at any time with new model elements. To be able to listen to an event, one must specify the element which generates such event. This makes it impossible to specify that a listener is to receive an event which may be emitted by a model element which is not yet present in the model. Concretely, a listener can ask to be notified any time some attribute is changed on any Actor Specific Task that in ‘contained’ in some specific Task. Without event bubbling, this can only be done for Actor Specific Tasks that are already present in the model. With event bubbling, the listener can simply listen to the event on the Task, as all events generated by any present of future Actor Specific Task will reach the Task.

When an event is bubbling towards its containers, any container on which relevant listeners have not been defined will simply not react.

4.4.3 Default events

Any EnactableProcessElement (section 3.2) can be an event emitter or receiver (by being an instance of EventDispatcher or EventListener). This section defines standard subclasses of the event class (section 3.4.1), and default events emitted by model elements relevant to collaboration.

· ActorEvent: any event generated by an actor

· NewActorEvent: a new actor has been added to the model

· ActorAvailabilityChangeEvent: a previously available actor becomes unavailable, or a previously unavailable actor becomes available. An actor can, for example, become unavailable because he/she is on a sick leave.
· ActorSpecificTaskEvent: any event generated by an actor specific task

· NewActorSpecificTaskEvent: a new actor specific task has been added to the model

· ActorSpecificTaskStartEvent: the execution of an actor specific task has started

· ActorSpecificTaskEndEvent: the execution of an actor specific task ends

· ActorSpecificArtifactEvent

· NewActorSpecificArtifactEvent: a new actor specific artifact has been added to the model

· ActorSpecificArtifactChangeEvent: the content of an actor specific artifact has changed. This can simply mean that a file has been modified.

· ActorSpecificArtifactRemovalEvent: an actor specific artifact has been removed from the model

· RelationshipEvent: any event generated by a relationship (ActorRelationship, ActorSpecificTaskRelationship, ActorSpecificArtifactRelationship, ArtifactOwnership, TaskAssignment, ArtifactUse).

· NewRelationshipEvent: a new relationship has been added to the model

· RelationshipValidityChangeEvent: a relationship is disabled or enabled. Disabling a relationship is a practical way of instructing tools to temporarily disregard it.

· RelationshipRemovalEvent: a relationship has been removed from the model.

4.5 Example

Collaborative behavior modeling using events is illustrated in this section on an example which shows the evolution of a CM_SPEM model how this evolution is accounted for using events.

4.5.1 General description

We consider a software engineering project concerned with the development of a complex ticket reservation system. A continuous deployment strategy is used, that is, new features are regularly pushed into production, as they are requested by the client and implemented by the team. The team is composed of the following participants:

· Bob, the designer. Bob designs and writes architecture description models. These models are used to generate interfaces and data conversion code.
· Alice, the integration manager. Alice’s role is to decide when features and fixes are ready for production, and merge them while making sure the result is functional and reasonably bug-free.
· Fred, the deployment manager. Fred deploys the project to production, monitors execution, and reports errors back to developers.
· Karl and Mike, developers. They mostly write code which implements performance sensitive functionalities and integration with legacy systems.
· Tracy, developer. She writes integration tests for the system under development.

Most of the features of the system being implemented are original, which means a lot of experimentation is done. The whole team is also not collocated. The team uses a distributed version control so as to exploit the flexible branching and local history manipulation capabilities needed in such situation.
Figure 21 shows how the different repositories communicate. Each feature is first prototyped in a developer’s local repository (1), and then pulled into the integration manager’s repository (2), before going into the official repository (3), which is used in production. Developers bring their local repositories up to date by pulling artifacts from the official repository (4).
[image: image20.png]

Figure 21 - Initial version control setup. A blue arrow represents artifacts being pulled; a red arrow represents artifacts being pushed.
4.5.2 Modeling with CM_SPEM

The actors of interest in this situation, and their respective roles are: Bob (Architect), Alice (Integration manager), Fred (System administrator), Karl (Developer), Mike (Developer), Tracy (Developer).

The tasks (TaskUse) involved are: “Edit architecture description model” (Bob), “Implement components” (Karl and Mike), “Integrate and deploy” (Alice), and “Write tests” (Tracy). For each task, an actor specific task is created. In the special case of the “Implement components” task, two actor specific tasks are created, as two actors are assigned to it.

The architecture description model is the only simple work product. The others (implementation code and test cases) are split into different units based on system components or test cases. To keep the example short, we will not list this units extensively, but only introduce them where needed. For each work product, the copy in each developer workspace is an actor specific artifact.

[image: image21.png][Pulls from/

—

[Sys. Admin.]

[Pushes to]

-—
Fred [Pulls from]

[Pulls from]

[Pulls from]

Alice

[Integration Mgr.] [Pulls from]

[Pulls from]

Bob

[Designer] [Developer]

Mike

[Pulls from]

Tracy

[Developer]

[Pulls from]

Karl

[Developer]

Figure 22 - Initial actor relationships
An initial set of relationships can be introduced (Figure 22) to reflect the version control setup presented in the previous section. These relationships are essentially actor relationships:

· “Pulls from”, which specifies where an actor pulls (retrieves) contributions from by default.
· “Pushes to” which specifies where an actor sends contributions to by default.

These two relationships are supported by a tool, which we will name “DVCS Configuration tool”, which configures the version control system based on the setup described in the model. The tools add listeners (among others) to the event classes “PullsFrom relationship creation” and “PushesTo relationship creation”. Whenever such relationships are added to the model, the tool is notified. In this specific case, it can setup remotes, branch tracking, default merge strategies, etc.
[image: image22.png]Implement C2
[Implementation]

(Karl)
[Watch test resuts] |, [Watch commits] [Reacts to]
<] 1
Write tests Edit data model Integrate contribs. Deploy and monitor
[Testing] [Architecture design] [Code integration] [Deployment management]
(Tracy) (Bob) (Alice) (Mike)

Impleﬁent Cl

[Implementation]
(Mike)

Figure 23 - Initial actor specific task relationships
Some actor specific task relationships can be defined as well (Figure 23):

· Watch commits: specifies that each commit made in the target is of interest to the source. In terms of tool support, this could mean that those commits, and their messages, are included in the information stream made available to whoever is working on the source actor specific task (or expressed interest in it).
· Watch test results: specifies that test results generated in the source should be taken into account in the source. This can be supported by a tool which mails test results to whoever is assigned to the source actor specific task. The tool can also allow configuring, for each relation, which tests or groups of tests should be included in the report.
· React to: specifies that some listener defined by the target should be notified each time some configurable events are fired in the source. In this example, deployment scripts can be automatically invoked whenever the integration manager pushes code to production.
4.5.3 Modifications to the base setup

The essential feature of CM_SPEM is its ability to cope with additional decisions that are made in the project as new information becomes available. This section discusses a few example situations, and describes how they could be handled.

4.5.3.1 A new member is added to the team

As the implementation of the system progresses, the team gains a better understanding of the system under development. For example, the input validation code written so far is found to be repetitive and error prone, while following so general, recognizable pattern.

The team decides to convert part of the hand-written code to models, backed by home-grown code-generators. A new participant, Sue, a designer, is added to the team, to assist Bob in the task.

In the simplest case, Sue is added to the existing setup, and has all the capabilities of Bob. In other words:

· A new Actor, “Sue”, is created.
· Sue is associated with the RoleUse “Designer”. An existing tool can handle the addition of a new designer by setting up specific access rights, of sending documentation to the newcomer.
· A new “Pulls From” relationship is added between Sue and Fred, and another one between Alice and Sue.

For example, the “DVCS Configuration tool” configures Sue’s workspace to reflect her relation to other team members. This facilitates the integration of Sue in the team.

A more sophisticated setup can be used instead. It could be argued that the workflow of Alice (the integrator) would be simpler if she could have a single interlocutor (Bob, the first designer), for all model-related issues. Sue is thus instructed to send her contributions to Bob instead, who now acts as a sub-system integrator. The implication for the DCVS configuration is that the “Pulls from” relationship between Alice and Sue is now between Bob and Sue. This is illustrated in Figure 24.
[image: image23.png][Pulls from]

—>

Fred
[Sys. Admin.]

[Pulls from]

[Pushes to]

[Pulls from]

[Pulls from]

Alice
[Integration Mgr.]

[Pulls from]

[Pulls from]

[Pulls from]

ﬁ [Pulls from]
Bob Mike
[Designer] [Developer]

Sue
[Designer]

[Pulls from]

Tracy

[Developer]

[Pulls from]

Karl

[Developer]

Figure 24 - Actor relationships after the integration of Sue
4.5.3.2 A serious bug is found, and new features are frozen until resolution

In the course of the project, a bug is discovered by some new integration test written by Tracy. The bug proved to be a serious one, requiring a tight collaboration between Bob (the designer), and all the developers (Karl, Mike, and Tracy).

Karl is coordinating the effort in this particular bug-hunting. The team soon realizes that a different setup is being used for the purpose of tracking and solving this particular bug. As the effort is taking several days, the team decides to introduce the new, temporary setup in the model, so as to have adequate tool support.

A new version control branch is created for the purpose of developing a fix. Karl acts as the integration manager on this branch, with respect to other developers, until the bug is fixed (Figure 25).
[image: image24.png]Bob

[Designer]

[Pulls from]

[Pulls from] [Pulls from]
Karl

[Developer]

Mike Tracy

[Developer] [Developer]

Figure 25 - Additionnal actor relationships for the purpose of bug hunting and correction
4.6 Conclusion
This section introduced behavioral modeling of collaboration. It is presented as an extension to the previous work done on structural collaboration modeling. The behavior of a collaborative process model is represented as the occurrence of collaboration-related events, and their handling by registered listeners.

The choice of events was mandated by the highly unpredictable nature of the details of collaborative work. In practice, this means that collaboration setups are always being changed to account for resource availability or novel difficulties on specific work items. However, these changes can be accounted for if notifications are always available for any change made to the process model, as this allows any interested party to adjust to the new setup. Notifications for collaboration setup change have been handled using an event formalism.

The described example shows how appropriate events are for handling collaboration setup changes in the process models. It should be noted how decisions about collaboration setups are left to practitioners, as only them can make an informed decision on such matter. It is only when such decision have been taken that they are introduced in the process model, appropriate events fired, and event listeners activated.
5. Asistance for Process Modeling
5.1 Introduction

Modeling and enactment of a process is a non trivial task. It can be seen as a process often called meta-process, which is performed by several roles: process designer, project manager, and developer. The first goal of this section is to present this meta-process. However, performing this meta-process is a complex task that needs to be assisted. The second goal of this section is thus to describe means to assist actors involved in this meta-process.
This section is structured as follows: after an overview of the meta-process (section 5.2), we put the focus on the modeling phase (section 5.3) by presenting a viewpoint-based modeling approach illustrated trough the VUML process.

5.2 OVERVIEW

Modeling and enactment of a process – that may be purely software or not – is in fact a process that may be described with classical process modeling tools. It is also a collaborative process since several actors work together to put it into action. In other words, we can consider such a process as a meta-process. As shown on Figure 26 below in the SPEM format, this meta-process is composed of three main phases that are, in the context of Galaxy: Formalize the process, Adapt/instantiate the process model, Perform a collaborative MDE process. In the remainder of this section, we give an informal description of these phases, by using the SPEM vocabulary. This meta-process could be described more formally with dedicated process modeling languages such as SPEM, and of course with CM_SPEM, but this kind of formalization is not in the scope of the current deliverable.
5.2.1 Phase 1: Formalize the process

This phase is performed by actors playing the “process designer” role. To formalize and model a process, we have to consider two scenarios. A common scenario consists in defining a new process from scratch. In this case the input product of this phase is generally an informal process resulting from an analysis of existing practices including interviews of project managers, etc. It may be described as textual documentation. The second scenario occurs when the process to formalize is an extension/adaptation of an existing one, that may be already formalized or not. In this case, one may apply reuse techniques (based on mappings) as those existing in SPEM2. The phase consists in producing a generic process model in both scenarios, independent of any specific project - described in a given PML. In the Galaxy context, this PML is supposed to be CM_SPEM.
5.2.2 Phase 2: Adapt/Instantiate a process model

This phase is performed whenever one want to apply the generic process model previously defined (phase 1) to a given collaborative MDE project. It is performed by the project manager and at least one process designer who should collaborate with him/her during this phase. This phase mostly consists in allocating resources to some elements of the generic process model. Those resources are people, tools, task durations available at project execution time. For instance, actors (human developer) playing a given role can be allocated to a given task in conformity to the generic process model; a starting date and a duration may be allocated to a given task; a tool can be allocated to an automatic transformation, etc. In addition, process designer and project manager may adapt/refine the generic process model to take into account project’s characteristics. The result of this phase is a formalized process model called “enactable process model”. That means this process model is sufficiently refined to be exploited by a PSEE (Process centered Software Engineering Environment).

5.2.3 Perform a collaborative MDE project

This phase takes place at enactment time. It is performed by developers who work together to run the project development. This phase is supported by an environment that should ideally be a PSEE. The entry parameter is a product that describes requirements of the project. Nature of these requirements (e.g.: users’ requirements, analysis model, design model, etc.) depends on the project’s type. The result of this phase is a product (e.g.: executable code, documentation, model). During this phase, if the supporting environment is a true PSEE, developers are guided and assisted in performing their tasks according to the process model enacted. The project manager and may be team managers may dynamically make the current process model evolve so as to take into account collaborative situations. For that they will perform actions provided by the PSEE depending on the current project state: add/suppress an actor, add/suppress an actor specific artifact, add/suppress an artifact specific relation, etc.
[image: image49.emf]

	

	

[image: image50.png]| = |
Informal ~~ _
~
| process - |
I ﬁ . o j I
I Formalize p Generic [
Process the process _-” Process
\ designers s model

— — — _—— e ——— —

[—_—— e — e ——

e

\
/

=z
-7~ Adaptiinstantiate Enactable
process model Process model

I process
\. requirements ressources

N

—— —A ————————————— N
El Tt =2
Products - _
requirements — T~

Perform a collaborative >
MDE project

[image: image25]
Figure 26 - Meta-process for modeling and enactment of MDE collaborative processes
5.3 VIEWPOINT-BASED Process Modeling Methodology

5.3.1 INTRODUCTION

In this section, we focus on the methodological aspect of viewpoint processes development, i.e. we aim at providing process designers with means to describe their viewpoint process models. In other words, we propose a meta-process that describes the way a viewpoint process model should be elaborated.

5.3.2 PRINCIPLE
In the context of a collaborative project, each Role has its proper process. When a role is individual, its process is performed by the associated actor within the scope of its Collaborative Unit (as defined in D2.1). For each Role (simple or composite), we can identify a viewpoint corresponding of the process to be enacted. This process is a perspective on the global process of the project. Thus for each viewpoint, we identify a process that represents the activities/tasks to be performed by the actors playing the corresponding roles.

To build and use process models, two main strategies are applicable, depending on the working mode, the size and complexity of the process, etc.: bottom up strategy, and top down strategy.

Actually, we can make two hypotheses on the way the project is managed and the process is modelled.

· Hypothesis 1:

For each role, a dedicated process model is built. The resulting processes have then to be merged in order to obtain a global view on the process of the whole project. This process model elaboration may use a bottom up strategy.

· Hypothesis 2:

There exists a common global process model for a given project, describing (high level) activities, roles and products (produced by process designer or project chief). In this case we have to apply a top down strategy, to extract viewpoint process models.

5.3.2.1 Bottom up strategy

The bottom up strategy is applicable when we can model (or reuse) local processes and want to coordinate them so as to achieve a collaborative work. Local processes are usually associated to viewpoints. In this strategy, the global process model is build up by composing viewpoint process models. It is recommended in the situation where the global process is unknown at the beginning of the development, e.g. if the development process is too complex or heavily distribuetd (many teams, heterogeneous development environments, heavy use of sub-contracting, etc.).

The meta-process corresponding to this strategy is the following:

1. Identify roles, products

2. Elaborate Viewpoint Process Models separately (concurrently or sequentially)

a. First produce the activity view (with roles, and sequencement)

b. Add products

3. Produce the global process model

a. Align the VPMs so as to remove inconsistencies

b. Identify Collaborative activities

a. Define collaboration patterns (scenarii) for collaborative activities

c. Compose (merge) the Viewpoint process models

4. Extract viewpoint process models from the global process model on request

a. a viewpoint process model is a particular case of view
This strategy is described and applied (in section 5.3.4) to our case study (VUML process described in the section 5.3.3 below).

5.3.2.2 Top down strategy

The top down strategy is applicable when we are able to model (or reuse) a centralized process, and want to distribute it among actors. In this strategy, viewpoint process models are obtained by extraction (view mechanism). Compared to the bottom up one, this strategy is easier to deploy when the global process (at least high level activities) is defined (imposed) by one partner and used (and possibly refined) by other partners.

The meta-process corresponding to this strategy is the following:

1. Identify roles, products, activities (individual and collaborative)

2. Elaborate the global Process Model

a. produce the activity flow diagram

b. associate products to each activity

c. define activity sequence

3. Identify viewpoints

4. Extract views of the global process model, corresponding to viewpoints
This strategy is described and applied to our case study in section 7.4.5
5.3.3 ILLUSTRATIVE EXAMPLE: THE VUML PROCESS

To illustrate our methodology, we consider the [Anwar, 2010]. It is a representative MDE process since most of its activities are model-based, and furthermore, some activities may be automated as model transformations (in particular "Compose design models"). It can be considered as a collaborative process since analysts/designers may be distributed over different sites and thus have to collaborate to build design models.
In the remainder of this section, we first recall the VUML methodology, then we list actors and their roles.

5.3.3.1 View-based modelling with VUML : The VUML Process

In VUML, a viewpoint is the perspective of one stakeholder or category of user on the system. A view is at execution time, the active viewpoint on the system.

As every viewpoint is modelled separately, there are as many models (called partial models) as viewpoints. These partial models are then merged to obtain a global unified model supplying independent accesses. Figure 27 below shows the overall VUML process, described in UML2.0 with an activity diagram. It consists of four main activities: Analyze the system, Elaborate partial models, Produce the VUML model, and Generate target code (not modelled here).
[image: image26.emf]
Figure 27 - VUML general process [Anwar, 2010]
5.3.4 BOTTOM UP STRATEGY APPLIED TO VUML PROCESS
5.3.4.1 Identify roles and viewpoints

This step should be centralized in order to reduce conflicts in the following steps. VUML actors and roles have been identified just above. They are analyst, chief analyst, analysts, designer, chief designer, designers, reviewer, reviewers, developer and developers.
For each of these roles (individual or composite), we define a viewpoint.

In the following step, we present a set of viewpoint process models associated to those viewpoints.

5.3.4.2 Elaborate viewpoint process models

· Viewpoints associated to analysts
Let us take the viewpoint corresponding to the composite role "Analysts" which includes the "Analyst" and "Chief analyst" individual roles.

Figure 28 below shows the partial process model corresponding to that viewpoint. Obviously, it emphasizes the task "Analyse the system" which is strongly collaborative.
[image: image27.png]ansissmode!

Figure 28: Process model related to Analysts viewpoint

"Analyze the system" is a composite task that can be refined. Figure 29 depicts the refinement of this task.

[image: image28.png]i

 raurements Both tasks are stongly
borative. The

B

Figure 29: Process model associated to "Analyze the system" with the Analysts viewpoint : refinement

Let us consider now, for the task “Define the project glossary”, the viewpoint "Analysts" which is associated to a composite role. In this case, we take into account the tasks performed by both simple analysts and the chief analyst. To model this collaborative task, one must choose a collaboration scenario since there are several ways to perform this task. Figure 30 shows a process model corresponding to the "n producers- 1 moderator" scenario.

[image: image29.png]analysl

propose z s se «e«ms
and definition: and definitions

E\ % a..a analyst
chit
analyst examin pvﬂpnsals

%%

proposals rgfusesame VW‘S
LM]

Figure 30: Task "Define the Project Glossary" related to Analysts viewpoint
· Viewpoints associated to designers
[image: image30.png]mmmmmmmmmmmmmm

mmmmmmm

Figure 31: VUML Process model from "Designers" viewpoint

Keeping the viewpoint "Designer", the task "Elaborate a partial model" can be refined as depicted in Figure 10.

[image: image31.png]Elaborate the Us
Case Diagram. e odel

Each task s
individual, (not

Class Diagram.

Figure 32: Elaborate a partial model from the "Designer" viewpoint

Consider now the "Chief designer" viewpoint. From this viewpoint, the VUML process can be modelled as a single task shown on Figure 11. The role "Designers" participates as a secondary role.

[image: image32.png]This task s collaborative,

it respondbte ehed
«Ja ¢. oot smliants
(designers)
‘glossary model 4 Partial models 14
L 25
z i

VUML model

Figure 33: VUML process from the "Chief designer" viewpoint

Let us consider now the "Designers" viewpoint for the task "Build a VUML model". The resulting process model consists of the collaborative task "Align partial models" performed by designers (simple designers and chief designer) and of two automatic transformations (see Figure 34).

[image: image33.png]R~
s ﬁéd,.,..m

S
designers

models

Elaborate the correspondence
model i

Chief designer

One collaborative task.
and 2 individual tasks

thatare automatic

T

Figure 34: Task "Build a VUML model" from "Designers" viewpoint
Keeping the same viewpoint, the collaborative task "Align partial models" can be modelled as shown by Figure 35.

[image: image34.png]g

slossay model |

Elaborate the correspondence
model

One collaborative task.
and2 individual tasks
thatare automatic
transformations.

Figure 35: Task "Align partial models" from "Designers" viewpoint
· Viewpoint associated to reviewers
 SHAPE * MERGEFORMAT

Figure 36: VUML process from "Reviewers" viewpoint

The collaborative task "Review the VUML model" can be refined with the same viewpoint as shown

Figure 36
. Several collaborative scenarios can be applied: parallel reviews, sequential reviews, … Figure 37 shows the “parallel review” scenario.

 SHAPE * MERGEFORMAT

Figure 37: Collaborative task "Review the VUML model" from "Reviewers" viewpoint

5.3.4.3 Actors involved in a VUML process

Actors involved in the process are analysts/designers who play the following roles:

· Simple roles :

· analyst

· chief analyst

· designer

· chief designer

· reviewer

· developer

· Composite roles :

· analysts (including the chief analyst role)

· designers (including the chief designer role)

· reviewers

· developers

For example, the viewpoint "Analysts" is associated to the multiple role "analysts" played by actors who participate in the Analysis phase of the VUML process.

In the following sections, we present the two strategies introduced above and show their application on the case study example.
5.3.4.4 Produce the global process model

Align the Viewpoint Process Models (VPMs)

Alignment of Viewpoint process models consists in removing syntactic and semantic conflicts (synonymy, polysemy) inherent to separate modelling. It is a highly collaborative activity, non automatic, which is out of scope of Galaxy because it requires a knowledge-based analysis (integrate user intentions, use of ontologies, etc.).

Identify Collaborative tasks

To produce the global process model, one must first identify collaborative tasks. According to the definition given above (see section 4), a collaborative task is a task in which several actors are involved (participate). As stated above, a collaborative task may be either weakly collaborative or strongly collaborative depending whether manipulated products are shared or not. There are several situations where a given task – belonging to at least two VPMs with the same name – is collaborative. The main situations are the following:

· Same roles but different actors, same instances of input products, same output product types but different instances. For example two analysts (having necessarily the same role and the same process to be followed), questioning two experts in two different domains, will produce two different models of analysis, which must be merged to supply a global model of the system

· Different roles and different actors, same instances of input products, same output product types but different instances. For example, a designer and a reviewer can have a common task of “verification” on a class diagram to produce a verified class diagram. Each of them will propose modifications and provide a new version of this class diagram.

For VUML process, we can deduce from VPMs defined above the following collaborative tasks: Analyze the system (strongly collaborative), Elaborate partial design models (weakly collaborative), Review partial design models (weakly collaborative), Review the VUML model (weakly or strongly collaborative)
Compose (merge) Viewpoint process models

Composition of VPMs aims at merging aligned VPMs. The way VPMs are merged is non deterministic and the result of merging should be order-independent [Anwar, 2011]. Nevertheless, we recommend to model collaborative activities first, and then to translate individual activities into the resulting model. Figure 38 below shows the merging of tasks “Elaborate a partial UML model“ previously done with several viewpoints. Each individual task has "Analysis model" as input. When two identical tasks (same name in two VPMs) work on the same instance of product, two situations may occur: (i) tasks work on copies of the instance or (ii) tasks really share the same instance. When the product is an "in" parameter (read only mode), the previous distinction is not relevant. It is the case for the input "Analysis model" of "Elaborate a partial UML model".

[image: image37.png]Ja

pm: Analysis model

b -

Elaborate a partial

!z. g nami

pm1: UML design model
Analysis model %.
V7] caorte pr

designers design models

pm: Analysis model

pm2: UML design model

Listof partial UML design models.

Figure 38: Merging of individual tasks "Elaborate a partial UML model"

Once collaborative tasks are modelled, we add individual tasks, specify tasks sequence, add notes if necessary, etc., to obtain the global VUML process model. Figure 39 shows this VUML process in which products are hidden.

[image: image38.png]— Ry — &%

An:lvu the system analysts
_ ™
F\

Haborate partial models designers

e
/h—@ Y

Build a VUML model /J"Emw,e,

s :j;_,

[no error]

Figure 39: Global VUML process model (activity view)
5.3.4.5 Extract VPMs from the global process model on request

Once the global process model is defined, it may be refined/modified by the project chief to take into account new requirements. In this case, it may become inconsistent with VPMs previously defined. It is thus useful to provide a way to extract VPMs from the last version of the global process model.

In the following section, we illustrate the application of the Top down strategy (see the corresponding process in section 5.3.2.2) on our case study.
5.3.5 TOP DOWN STRATEGY APPLIED TO VUML PROCESS

5.3.5.1 Identify roles, products, activities (individual and collaborative)

We consider the same roles, products and activities as those defined in the first strategy above (section 5.3.4.1).
5.3.5.2 Elaborate the global Process Model

In this step, we define the process model by means of refinements, starting with high level activities and refining them as detailed as necessary. All necessary roles are used together.

The resulting process model is shown on Figure 40. For readability sake, products are hidden.

[image: image39.png]— Ry — &%

An:lvu the system analysts
_ ™
F\

Haborate partial models designers

e
/h—@ Y

Build a VUML model /J"Emw,e,

s :j;_,

[no error]

Figure 40: Global VUML process model
5.3.5.3 Identify viewpoints

Once the global process model is defined in a centralized way, we aim at distribute it among actors playing given roles. To do it, one must first identify viewpoints as defined above (see section 5.3.2.2).
5.3.5.4 Extract views of the global process model, corresponding to viewpoints
The goal of this task is to get Viewpoint Process Models (VPMs) from the VUML process model according to viewpoints identified above. This can be achieved by using a mechanism for extracting views from a process model.
It consists first in focusing on the identified roles to extract tasks that involve each of them. Then, each task (or sequence of tasks, if any), will be refined (as necessary) to give a process model that describes the process that the actor playing the corresponding role has to follow, i.e. his viewpoint process.

In that way, we obtain the same VPMs as those defined via the Bottom up strategy.
Some basic rules allow to validate, by crossed controls, the projection of the global process, or at least the including process (when refining on several stages for example), in several VPprocesses. In particular, one can control that all of the artefacts being in entry or in exit of the task in the including process, are on the model refined.

Relations between tasks can appear on the models. In particular, to allow an actor to have an idea of the tasks and the processes on which he impacts by his action and then to be if and so to be, if he wishes it, informed about the collaborative network in which he intervenes.
This methodology should either allow to give all the information onto the collaboration in which an actor is implied, or allow him to focus on his work by masking the external elements in his appropriate process.

5.3.5.5 Operators for managing viewpoints
In order to support this methodology, we will provide guidances and operators. Actually, project manager will use particular operators to manage viewpoints. Below are some examples of needed operators.

Extract allows to get a particular viewpoint (VP), process from the global process (P) according to a given role.

Extract : process x role -> process

P /-> VP

Change_VP allows him to get a particular viewpoint (VP), associated to a given role, starting from another Viewpoint process (naturally both are vP_process of a same global process)

Change_VP : process x role -> process

VP1 /-> VP2

Make_CC is cross-checkings between some viewpoints, according to a set of criteria and return a map of results .

Make_CC : process x {process}n x {criteria}-> Map

 {VPi} x {criteria} /-> criticity_map

5.3.6 USEFULNESS IN GALAXY AND ENACTMENT
There exists a common global process model for a given project, describing (high level) activities, roles and products. It has probably been defined by process designer or project chief. In the case of this process is statically defined and does not support dynamic evolution (no deviations management), it constitutes a reference model for all developers, that will structure/guide the development

Each Galaxy participant (i.e. Actor) has access (in his workspace) to a representation of the global process, but also to projections of this process model according to his role’s viewpoint. In addition, a participant should have access, if it is the case, to viewpoint processes related to including composite roles (e.g. a designer may see the « designers » viewpoint process)

In both case, at enactment time, each participant has a specific refined representation of the global process
that includes process elements necessary to perform collaborative tasks (other interacting actors, …) and he accesses to artefacts and performs actions on them according to his role’s rights

But we have to consider that this specific process may evolve during execution (because of team manager decisions, or collaboration needs, evolution of the collaborative strategy,…

Thus, each participant uses/informs the process monitoring system to maintain a consistent development state.
The Galaxy framework should propose at any time to developers, information about guidance and tools associated to their processes and, at any time, it should keep (for traceability sake) and provide information about the state of the current process being performed (state of activities, state of artefacts, actors involved, etc.)
5.3.7 CONCLUSION
This section 5.3 provides the notion of viewpoint-oriented process modelling and a methodology to guide it. We use our experience in composition of models in order to merge processes in a bottom-up approach. This will allow to model independent or parallel local processes which implement independent or parallel activities. The global process model is then built by composing these viewpoint-oriented process models. This strategy can be useful for several reasons: 1) when we do not want to reveal the global process to the actors, or 2) when we want a strongly decentralized work, or 3) when we want to start from the “role” experience by modelling its usual way of behaving and attempt to build a global process. Moreover, this approach highlights collaborative activities. Merging models of processes, puts the emphasis on similarities between models and identifies common elements, and collaborative activities.

By considering the opposite approach, a top down approach, we shall have to decompose the global process to obtain local processes (that we can qualify as viewpoint-oriented process) that are obtained by extraction mechanisms. This allows the distribution of tasks in the context of a collaborative work.
This approach also should either allow to give all the information onto the collaboration in which an actor is implied, or allow him to focus on his work by masking the external elements in his appropriate process.
In reality, and in a similar way of an approach of construction of an object-oriented system, collaborative MDE process modelling is often a combination of both strategies. Indeed, for coordination, collaboration and cooperation reasons, the global process is mostly collocated with local processes.
This methodology provides a guidance to actors for performing their tasks but is naturally semi-prescriptive because processes should be followed by developers, but nobody can force them.
This approach also should either allow to give all the information onto the collaboration in which an actor is implied, or allow him to focus on his work by masking the external elements in his appropriate process.
In reality, and in a similar way of an approach of construction of an object-oriented system, collaborative MDE process modelling is often a combination of both strategies. Indeed, for coordination, collaboration and cooperation reasons, the global process is mostly collocated with local processes.
This methodology provides guidance to actors for performing their tasks but is naturally semi-prescriptive because processes should be followed by developers, but nobody can force them.
6. Assistance for Process Enactment
6.1 General overview

Process modelling and assistance for enactment aims at allowing users to define and enact CM_SPEM process models. To this end, we propose a conceptual framework as shown by Figure 41. The framework is divided into two components: CM_SPEM Process Model Editor, and CM_SPEM Process Model Enactment Engine.
The CM_SPEM Process Model Editor should allow process designers to describe, and modify MDE process models. Editing an MDE process model includes describing its structure and its behaviour, and checking it with respect to the constraints defined in the CM_SPEM metamodel. Outcomes of process editing are stored in a repository called Generic Process Models Repository.
The CM_SPEM Process Model Editor should also allow a project manager to customize a Generic MDE process model to a given project. Outcome of this customization is called Project-specific Process Model.
[image: image40.png]CM_SPEM Process Model Ecitor

- Generic rocess Mocel Edting
-Process Mosel Customization

Project.specitic
Process Model

CM_SPEM Process Model

Enactment Engine.
-Enactment operators
-Process elements ifecycles
-Guigance

Project Repository

-Cose
~Mocels
“Documentation

S

Process Designer

&
/'

Figure 41 - Conceptual framework for process modeling and assisted enactment
The CM_SPEM Process Model Enactment Engine should allow developers to enact a Project-specific Process model by allowing them to execute enactment operators and to know the sate of any MDE process element, on the basis of the associated lifecycles. Developers can then keep track of what is the current state of each element of the MDE project, what has been done before and what is left. The CM_SPEM Process Model Enactment Engine should also provide developers with elements of guidance associated to process elements. Outcomes are models, code, documentation, etc. and are stored in a MDE Project Repository.
6.2 Process Enactment
Figure 42 depicts the conceptual architecture of the CM_SPEM Enactment Engine. The Actual Process corresponds to the work that is actually being performed by human actors. Before the actual process starts, the Project-specific Process Model is in initial configuration where:

· Temporal information that is initially known is specified, i.e. dates are specified for Milestones, start dates and durations are specified for the whole Process, Activities, Task Uses, Actor-Specific Tasks, and Steps.
· Actors are registered, their assigned Role Uses are specified, and their collaborative units are created and set up.
· Used tools are set up according to the specification of Tool Uses.
· The state of each Enactable Element is set to its initial state according to its associated lifecycle, if any.

However, the Project-specific Process Model is subject of evolution so as to reflect the Actual Process, and to manage collaboration. To this end, the process enactment mechanism is event-based. The CM_SPEM Enactment Engine is both an Event Listener and an Event Dispatcher.
Whenever an Enactment Operator is executed by an Actor, the Enactment Engine generates the corresponding Operator Event and sends it to the related Enactable Process Element which reacts according to its lifecycle, if any. Possible receivers are those discussed in section 3.3, including Tool Uses that correspond to the used tools plugged in the Enactment Engine.
[image: image41.png]reflects Actual Process

Project-specific CM_SPEM
Process model Enactment Engine

Used Too

Figure 42 - The CM_SPEM Enactment Engine
6.2.1 Handling Enactment Operators

The CM_SPEM Enactment Engine offers an Application Programming Interface (API) to execute Enactment Operators which are mapped into executable actions. This API may be, for example, coupled with a Graphical User Interface (GUI), where executable actions are mapped into graphical items (buttons, menus, etc.). Preconditions of Enactment Operators are checked to show whether they are applicable or not. Moreover, executable actions may be contextualized so as to display for each Enactable Pocess Element only the set of Enactment Operators that can be applied on.
6.2.2 Handling Lifecycles
Enactable Elements are in charge of changing their state according to their lifecycles. As specified in section 3.4, each Enactable Element is both an Event Listener and an Event Dispatcher. It listens to all events that may trigger its lifecycle’s transitions. Whenever it receives an event, it reacts to by checking if there is any transition that could be triggered. In case, the transition is triggered and thus it changes its state according to its lifecycle, then it generates the corresponding Change State Event and sends it to the Listeners which have subscribed to listen to such events.
6.2.3 Handling Guidance Elements
As discussed in section 3.7, guidance elements may be associated to Enactable Process Elements. In addition, conditions may be specified to define when they are applicable.

 The CM_SPEM Enactment Engine is in charge of checking applicability of guidance elements. It also offers an API for accessing them.
6.2.4 Process Enactment Traceability

In addition to traceability of models transformations that is handled by the used tools for executing them, successive states of Enactable Process Elements and events occurring at enactment time are stored. This gives a trace of process enactment that could be used to help process stakeholders better understand and solve conflicts, manage risks, analyze, and assess the process for improvement.
6.3 Handling Collaboration
In section 4, we described the dynamic behavior of collaboration using events. The foundation of collaboration support is the ability, for any process element, to raise an event to signify the occurrence of something of interest, and the possibility to subscribe and react to those events. Collaboration is thus handled by providing such communication infrastructure, which is the responsibility of the CM_SPEM process model engine. The description of the communication infrastructure should be considered as indications for implementation.

The CM_SPEM process model engine offers:

· A query API to specify CM_SPEM process model elements

· An event API, which is composed of:

· Event subscription and generation facilities

· Event notification conventions and handling

6.3.1 The query API

To be able to subscribe to an event, an EventListening must specify the EventDispatcher that should be the source of the event. This requires the ability to unambiguously specify an element in a CM_SPEM model, while remaining easy to use (that is, not having to assign a unique ID to every model element).

The query API offers the ability to retrieve a set of model element based on an expression. It could be based on OCL [Habela, 2008], XQuery [W3C, 2010], or be custom built.

6.3.2 The event API

Any entity (most likely collaboration support tools) which need to subscribe or generate events must do so by calling the event API. To this end, an event API is offered, and its semantics described hereafter.

6.3.2.1 Event handling conventions

Every EventListener is associated with an executable, which is invoked when the event subscribed to occurs. EventListeners could be associated with functions, but this constrains supporting tools to be in the same executable as the communication infrastructure. An alternate calling mechanism can be added for calling remote tools (it could be based on HTTP for example).

Event parameters and other general information on the process model are transmitted to the executable using environment variables. Using executables and environment variables ensures the event handling mechanism is generic and can be used by any tool.

6.3.2.2 Subscribing to events

To subscribe to an event, an EventListening is created (by a tool for example), using an operation of the event API (which may be called, for example, addEventListening), which specifies:

· The event class

· The EventDispatcher, which is selected using the query API

· The EventListener, which is also selected using the query API

For each EventDispatcher, EventListenings are saved in the order they are declared, and whenever an event occurs, these EventListenings are activated in the declaration order (first-declared, first-called). The execution of each EventListener returns before the next EventListening is activated (it is however possible for the EventListener to launch an asynchronous operation which does not complete before other listeners in the queue are activated). This makes sure any event handler can cancel event handling, and prevent any other handler to be called.
6.3.2.3 Receiving events
Event notifications are sent by invoking executables associated with EventListeners. Each event listener has the ability to cancel further handling of its event, by interacting with the CM_SPEM process model engine (for example, using an execution return status).
Using this event handling infrastructure, collaboration support tools can subscribe to the introduction or modification of actors, actor specific artifacts, actor specific tasks, and collaboration relationships, so as to carry some actions out, on behalf of users. Tools can also raise events themselves, which makes communication between the tools themselves possible.
7. Conclusion
The work presented in this document describes the results of the second part of the task T2.4 of the Galaxy work package WP2. The global objective of this task is to define concepts and a methodology for modeling and enactment of processes that govern model-driven collaborative development, so called Collaborative MDE Processes. The final aim is to use such process models in order to provide a computer-assisted enactment.
This document is the following of the D2.4.1 deliverable in which we introduced a metamodel – called CM_SPEM (Collaborative Model-based Software & Systems Process Engineering Metamodel) - that extends SPEM 2.0 and QVT metamodels in order to include concepts related to collaboration and MDE processes. D2.4.1 was focused on the structural part of MDE collaborative process models.

In this D2.4.2 deliverable, we have addressed the enactment of MDE collaborative processes and the assistance to actors involved in the process. The main goal is to assist developers during a Galaxy project. To make that possible, we have first enriched the CM_SPEM metamodel with packages dealing withbehavioral and assistance aspects. More precisely, we have defined the CM_SPEM::::Process_Behavior composed of two sub-packages: MDE_Process_Behavior and Collaboration_Behavior.

Secondly we have defined a viewpoint-based process modelling methodology whose goal is to help process designer to elaborate large and complex process models. This methodology can be seen as a meta-process which offers two viewpoint-based strategies for elaborating process models: bottom up strategy, top down strategy.

Thirdly we have specified enactment and assistance mechanisms so as to guide developers during the execution of collaborative MDE processes, and inform the Galaxy framework about the processes’ states.

Most of the objectives of this deliverable have been achieved. However, we left aside some aspects that seem out of the scope of the T2.4 task. The first one deals with the management of process deviations which are not specific of collaborative MDE processes. We allow process model evolution at any time before enactment, and also during enactment time through collaboration concepts (add/suppress a new actor, add a new specific task, add/suppress a specific task relationship, etc.). The second aspect is the traceability. We have not defined a particular traceability policy but offer low level mechanisms to trace any event occurring at enactment time (e.g. launch a task, add a new relationship between two actors, register the termination of a task, etc.).
This D2.4.2 deliverable will be used in the tasks T4.1 (Architectrure Specification), T4.2 (Galaxy Core Framework), and T4.3 which aims to define a tailored collaborative process for the Airbus Galaxy use case.
8. References
 [Anwar, 2010]
Anwar A., S., Coulette B., Nassar M., Kriouile A,. (2010). A Rule-Driven Approach for composing Viewpoint-oriented Models. Journal of Object Technology, ETH Swiss Federal Institute of Technology, Vol. 9 N. 2, pp. 89-114.
[Galaxy, 2011]
The Galaxy Project partners, Collaborative MDE Process Modeling

[OMG, 2008-a]
OMG SPEM2.0, “Software & System Process Engineering Metamodel”, OMG document, final adopted specification, ptc/07-03-03, at http://www.omg.org
[OMG, 2008-b]
Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification, at http://www.omg.org/spec/QVT/1.0/PDF/
© Erreur ! Nom de propriété de document inconnu. IF "" = "9" "Company DOCPROPERTY "A_Plant" * MERGEFORMAT " "Erreur ! Nom de propriété de document inconnu." * MERGEFORMAT
Erreur ! Nom de propriété de document inconnu.
 Erreur ! Nom de propriété de document inconnu.. All rights reserved. Confidential and proprietary document. Erreur ! Nom de propriété de document inconnu.Erreur ! Nom de propriété de document inconnu.

 DOCPROPERTY "V_Export_Control_Text3" * MERGEFORMAT Erreur ! Nom de propriété de document inconnu.

 DOCPROPERTY "V_Export_Control_Text4" * MERGEFORMAT Erreur ! Nom de propriété de document inconnu.
This document and all information contained herein is the sole property of Erreur ! Nom de propriété de document inconnu.. No intellectual property rights are granted by the delivery of this document or the disclosure of its content. This document shall not be reproduced or disclosed to a third party without the express written consent of Erreur ! Nom de propriété de document inconnu.. This document and its content shall not be used for any purpose other than that for which it is supplied.

	Erreur ! Nom de propriété de document inconnu.

 DOCPROPERTY "V_Natco_Box1a" * MERGEFORMAT Erreur ! Nom de propriété de document inconnu.
	Erreur ! Nom de propriété de document inconnu.

 DOCPROPERTY "V_Natco_Box2a" * MERGEFORMAT Erreur ! Nom de propriété de document inconnu.

 DOCPROPERTY "V_Natco_Box2b" * MERGEFORMAT Erreur ! Nom de propriété de document inconnu.
	Erreur ! Nom de propriété de document inconnu.

 DOCPROPERTY "V_Natco_Box3a" * MERGEFORMAT Erreur ! Nom de propriété de document inconnu.

 DOCPROPERTY "V_Natco_Box3b" * MERGEFORMAT Erreur ! Nom de propriété de document inconnu.
	Erreur ! Nom de propriété de document inconnu.

 DOCPROPERTY "V_Natco_Box4a" * MERGEFORMAT Erreur ! Nom de propriété de document inconnu.

 DOCPROPERTY "V_Natco_Box4b" * MERGEFORMAT Erreur ! Nom de propriété de document inconnu.

Erreur ! Nom de propriété de document inconnu.
Page 1 of 3

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 1 of 90

[image: image51.jpg]

[image: image52.jpg]0@

Galax

o
v

